Application of Symmetric Uncertainty and Mutual Information to Dimensionality Reduction and Classification of Hyperspectral Images
نویسندگان
چکیده
Remote sensing is a technology to acquire data for disatant substances, necessary to construct a model knowledge for applications as classification . Recently Hyperspectral Images (HSI) becomes a high technical tool that the main goal is to classify the point of a region. The HIS is more than a hundred bidirectional measures, called bands (or simply images), of the same region called Ground Truth Map (GT). But some bands are not relevant because they are affected by different atmospheric effects; others contain redundant information; and high dimensionality of HSI features make the accuracy of classification lower. All these bands can be important for some applications; but for the classification a small subset of these is relevant. The problematic related to HSI is the dimensionality reduction. Many studies use mutual information (MI) to select the relevant bands. Others studies use the MI normalized forms, like Symmetric Uncertainty, in medical imagery applications. In this paper we introduce an algorithm based also on MI to select relevant bands and it apply the Symmetric Uncertainty coefficient to control redundancy and increase the accuracy of classification. This algorithm is feature selection tool and a Filter strategy. We establish this study on HSI AVIRIS 92AV3C. This is an effectiveness, and fast scheme to control redundancy. Keyword-Hyperspectral images, Classification, Feature selection, Mutual Information, Redundancy,
منابع مشابه
Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012